Coal Transportation Fuels

Federal Energy Technology Center Product Office for Fuels & Specialty Markets

Presented by

Michael Nowak
Project Manager, Fuels Resources Division

Overview

- **■** Mission/Goals
- **Products**
- Drivers
- Strategy
- Vision 21
- **■** Pioneer Plant
- Roadmap
- **■** Where Does University Research Fit?

Mission

■ Help the United States secure an affordable energy supply by fostering the development and deployment of technologies to produce low-emission, coal-derived fuels and chemicals that can compete with those produced from oil.

UCR Review Meeting, June 1998

Goal

■ Provide environmentally superior coal-based transportation fuels and chemical feedstocks that can compete with petroleum crude at \$21 per barrel by the year 2015.

Fuel Systems Products

- **FT Diesel**
- Methanol
- Other Oxygenates
- Hydrogen/Synthesis Gas
- High-Performance Jet Fuel
- Other Clean Fuels

- Slurry Bubble Column Fischer-Tropsch Synthesis
- Multi-Stage Dispersed Catalyst Direct Liquefaction

Benefits / Drivers

Environment

- Produce extremely high quality, cost-competitive lowemission fuels
- Create concentrated stream of CO₂
- Process a broad range of feedstocks

	Coal-Derived	Petroleum-Derived	CARB Goal
	Gasoline	Gasoline	(2000)
Sulfur (ppm)	10	338	30
Aromatics (v%)	7	28	22
Benzene (v%)	0.3	1.6	0.8
Olefins (v%)	<1	10	4.0

Benefits / Drivers

Environment

FT Diesel Emissions Reduction Relative to Petroleum Diesel Fuels

SO _x	100%
CO	46%
Hydrocarbons	38%
Particulates	30%
NO_x	9%

Benefits / Drivers

Economy

 By 2015, increase employment by 300,000 for every 1MM bpd production

Be competitive with IEA's projected 2015 \$21/bbl cost

for imported oil

 Reduce trade deficit due to oil imports; projected to be approx. \$120B annually by 2015

Strategies

- Government / Industry / University Partnerships
- Collaboration with Engine Developers
- **Market Opportunities**
- **■** Pioneer Plant
- Vision 21

VISION 21 GENERAL SCENARIO

Vision 21 Concept Technology Modules Input Output Select modules for plant configuration Modules Modules Modules Market Driven Combustion/ Separation/ Vision Power Gasification 21 Conversion Modules Modules Fuel Integrated Feed Energy Stock Plants Gas Fuels/ Clean Up Products Modules • C O , Steam/ Cogen

VISION 21 INDIRECT PRODUCTION OF FUELS AND CHEMICALS

Example of Vision 21 Concept Technology Modules

VISION 21 PRODUCTION OF DISTILLATE CRUDE

Example of Vision 21 Concept Technology Modules

Major Program Thrusts

■ Pioneer Plant

• Early, simple Vision 21 facility

Schedule: POC Verification

Program Activities - Technology Roadmap

H, Utilization Process R&D Co-proc/Co-prod Optimal H, Eff Feedstock Conversion Catalyst Dev/R&D **High Prod Sel Cat Molecular Computer Sim** Reactor/ Process Reactor Hydrodynamics/Design **POC Scale-up Pioneer Plant Development Process Integration Feas Study Eng Dev Ref Integration Novel Catalyst/Wax Separations** Sol/Liq Sep Clean Product **Separation Processes Gas Separation** Econ H₂/Syngas **Membrane Reactor Dev Refinery Integration Refinery Acceptance Product Upgrading Prod Char** Product Prep, Upgrade, Engine Test **Spec Fuels** CO₂ LCA **Process Efficiency & Sequestration** Sequester/Use CO₂ **Environmental** Management **BOP Emissions LCA Waste Minimization Near Zero Emissions Fuel Additives / Extenders Commercial FT Diesel Automotive Flex Fuel Products** C Products & Feedstocks **Research Transportation Fuels Research Jet Fuel**

Caution

Critical for Future

Committed

Relationship to Advanced Research Programs

Enabling Technology

- Hydrogen
- CO₂ Sequestration

■ Visionary Science

- Computer-aided chemistry and engineering
- Step-out Technologies

Partnerships

Summary

- **FETC Fuels Program is product oriented**
- **■** Environmental Drivers are very important
- Short, intermediate and long-term products
- Includes highly efficient, energyplex concept
- Universities critical for developing enabling and visionary technologies
- University/Government/Industry R&D partnering expected to yield maximum results

